FTXUI  5.0.0
C++ functional terminal UI.
animation.cpp
Go to the documentation of this file.
1 #include <cmath> // for sin, pow, sqrt, cos
2 #include <utility> // for move
3 
5 
6 // NOLINTBEGIN(*-magic-numbers)
7 namespace ftxui::animation {
8 
9 namespace easing {
10 
11 namespace {
12 constexpr float kPi = 3.14159265358979323846f;
13 constexpr float kPi2 = kPi / 2.f;
14 } // namespace
15 
16 // Easing function have been taken out of:
17 // https://github.com/warrenm/AHEasing/blob/master/AHEasing/easing.c
18 //
19 // Corresponding license:
20 // Copyright (c) 2011, Auerhaus Development, LLC
21 //
22 // This program is free software. It comes without any warranty, to
23 // the extent permitted by applicable law. You can redistribute it
24 // and/or modify it under the terms of the Do What The Fuck You Want
25 // To Public License, Version 2, as published by Sam Hocevar. See
26 // http://sam.zoy.org/wtfpl/COPYING for more details.
27 
28 /// @brief Modeled after the line y = x
29 float Linear(float p) {
30  return p;
31 }
32 
33 /// @brief Modeled after the parabola y = x^2
34 float QuadraticIn(float p) {
35  return p * p;
36 }
37 
38 // @brief Modeled after the parabola y = -x^2 + 2x
39 float QuadraticOut(float p) {
40  return -(p * (p - 2.f));
41 }
42 
43 // @brief Modeled after the piecewise quadratic
44 // y = (1/2)((2x)^2) ; [0, 0.5)
45 // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
46 float QuadraticInOut(float p) {
47  return p < 0.5f ? 2.f * p * p : (-2.f * p * p) + (4.f * p) - 1.f;
48 }
49 
50 // @brief Modeled after the cubic y = x^3
51 float CubicIn(float p) {
52  return p * p * p;
53 }
54 
55 // @brief Modeled after the cubic y = (x - 1)^3 + 1
56 float CubicOut(float p) {
57  const float f = (p - 1.f);
58  return f * f * f + 1.f;
59 }
60 
61 // @brief Modeled after the piecewise cubic
62 // y = (1/2)((2x)^3) ; [0, 0.5)
63 // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
64 float CubicInOut(float p) {
65  if (p < 0.5f) {
66  return 4.f * p * p * p;
67  }
68  const float f = ((2.f * p) - 2.f);
69  return 0.5f * f * f * f + 1.f;
70 }
71 
72 // @brief Modeled after the quartic x^4
73 float QuarticIn(float p) {
74  return p * p * p * p;
75 }
76 
77 // @brief Modeled after the quartic y = 1 - (x - 1)^4
78 float QuarticOut(float p) {
79  const float f = (p - 1.f);
80  return f * f * f * (1.f - p) + 1.f;
81 }
82 
83 // @brief Modeled after the piecewise quartic
84 // y = (1/2)((2x)^4) ; [0, 0.5)
85 // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
86 float QuarticInOut(float p) {
87  if (p < 0.5f) {
88  return 8.f * p * p * p * p;
89  }
90  const float f = (p - 1.f);
91  return -8.f * f * f * f * f + 1.f;
92 }
93 
94 // @brief Modeled after the quintic y = x^5
95 float QuinticIn(float p) {
96  return p * p * p * p * p;
97 }
98 
99 // @brief Modeled after the quintic y = (x - 1)^5 + 1
100 float QuinticOut(float p) {
101  const float f = (p - 1.f);
102  return f * f * f * f * f + 1.f;
103 }
104 
105 // @brief Modeled after the piecewise quintic
106 // y = (1/2)((2x)^5) ; [0, 0.5)
107 // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
108 float QuinticInOut(float p) {
109  if (p < 0.5f) {
110  return 16.f * p * p * p * p * p;
111  }
112  const float f = ((2.f * p) - 2.f);
113  return 0.5f * f * f * f * f * f + 1.f;
114 }
115 
116 // @brief Modeled after quarter-cycle of sine wave
117 float SineIn(float p) {
118  return std::sin((p - 1.f) * kPi2) + 1.f;
119 }
120 
121 // @brief Modeled after quarter-cycle of sine wave (different phase)
122 float SineOut(float p) {
123  return std::sin(p * kPi2);
124 }
125 
126 // @brief Modeled after half sine wave
127 float SineInOut(float p) {
128  return 0.5f * (1.f - std::cos(p * kPi));
129 }
130 
131 // @brief Modeled after shifted quadrant IV of unit circle
132 float CircularIn(float p) {
133  return 1.f - std::sqrt(1.f - (p * p));
134 }
135 
136 // @brief Modeled after shifted quadrant II of unit circle
137 float CircularOut(float p) {
138  return std::sqrt((2.f - p) * p);
139 }
140 
141 // @brief Modeled after the piecewise circular function
142 // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
143 // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
144 float CircularInOut(float p) {
145  if (p < 0.5f) {
146  return 0.5f * (1.f - std::sqrt(1.f - 4.f * (p * p)));
147  }
148  return 0.5f * (std::sqrt(-((2.f * p) - 3.f) * ((2.f * p) - 1.f)) + 1.f);
149 }
150 
151 // @brief Modeled after the exponential function y = 2^(10(x - 1))
152 float ExponentialIn(float p) {
153  return (p == 0.f) ? p : std::pow(2.f, 10.f * (p - 1.f));
154 }
155 
156 // @brief Modeled after the exponential function y = -2^(-10x) + 1
157 float ExponentialOut(float p) {
158  return (p == 1.f) ? p : 1.f - std::pow(2.f, -10.f * p);
159 }
160 
161 // @brief Modeled after the piecewise exponential
162 // y = (1/2)2^(10(2x - 1)) ; [0,0.5)
163 // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
164 float ExponentialInOut(float p) {
165  if (p == 0.f || p == 1.f) {
166  return p;
167  }
168 
169  if (p < 0.5f) {
170  return 0.5f * std::pow(2.f, (20.f * p) - 10.f);
171  }
172  return -0.5f * std::pow(2.f, (-20.f * p) + 10.f) + 1.f;
173 }
174 
175 // @brief Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x -
176 // 1))
177 float ElasticIn(float p) {
178  return std::sin(13.f * kPi2 * p) * std::pow(2.f, 10.f * (p - 1.f));
179 }
180 
181 // @brief Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2,
182 // -10x) +
183 // 1
184 float ElasticOut(float p) {
185  return std::sin(-13.f * kPi2 * (p + 1.f)) * std::pow(2.f, -10.f * p) + 1.f;
186 }
187 
188 // @brief Modeled after the piecewise exponentially-damped sine wave:
189 // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
190 // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
191 float ElasticInOut(float p) {
192  if (p < 0.5f) {
193  return 0.5f * std::sin(13.f * kPi2 * (2.f * p)) *
194  std::pow(2.f, 10.f * ((2.f * p) - 1.f));
195  }
196  return 0.5f * (std::sin(-13.f * kPi2 * ((2.f * p - 1.f) + 1.f)) *
197  std::pow(2.f, -10.f * (2.f * p - 1.f)) +
198  2.f);
199 }
200 
201 // @brief Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
202 float BackIn(float p) {
203  return p * p * p - p * std::sin(p * kPi);
204 }
205 
206 // @brief Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
207 float BackOut(float p) {
208  const float f = (1.f - p);
209  return 1.f - (f * f * f - f * std::sin(f * kPi));
210 }
211 
212 // @brief Modeled after the piecewise overshooting cubic function:
213 // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
214 // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
215 float BackInOut(float p) {
216  if (p < 0.5f) {
217  const float f = 2.f * p;
218  return 0.5f * (f * f * f - f * std::sin(f * kPi));
219  }
220  const float f = (1.f - (2.f * p - 1.f));
221  return 0.5f * (1.f - (f * f * f - f * std::sin(f * kPi))) + 0.5f;
222 }
223 
224 float BounceIn(float p) {
225  return 1.f - BounceOut(1.f - p);
226 }
227 
228 float BounceOut(float p) {
229  if (p < 4.f / 11.f) {
230  return (121.f * p * p) / 16.f;
231  }
232 
233  if (p < 8.f / 11.f) {
234  return (363.f / 40.f * p * p) - (99.f / 10.f * p) + 17.f / 5.f;
235  }
236 
237  if (p < 9.f / 10.f) {
238  return (4356.f / 361.f * p * p) - (35442.f / 1805.f * p) + 16061.f / 1805.f;
239  }
240 
241  return (54.f / 5.f * p * p) - (513 / 25.f * p) + 268 / 25.f;
242 }
243 
244 float BounceInOut(float p) {
245  if (p < 0.5f) {
246  return 0.5f * BounceIn(p * 2.f);
247  }
248  return 0.5f * BounceOut(p * 2.f - 1.f) + 0.5f;
249 }
250 
251 } // namespace easing
252 
253 Animator::Animator(float* from,
254  float to,
255  Duration duration,
256  easing::Function easing_function,
257  Duration delay)
258  : value_(from),
259  from_(*from),
260  to_(to),
261  duration_(duration),
262  easing_function_(std::move(easing_function)),
263  current_(-delay) {
265 }
266 
268  current_ += params.duration();
269 
270  if (current_ >= duration_) {
271  *value_ = to_;
272  return;
273  }
274 
275  if (current_ <= Duration()) {
276  *value_ = from_;
277  } else {
278  *value_ = from_ + (to_ - from_) * easing_function_(current_ / duration_);
279  }
280 
282 }
283 
284 } // namespace ftxui::animation
285 
286 // NOLINTEND(*-magic-numbers)
Animator(float *from, float to=0.f, Duration duration=std::chrono::milliseconds(250), easing::Function easing_function=easing::Linear, Duration delay=std::chrono::milliseconds(0))
Definition: animation.cpp:253
void OnAnimation(Params &)
Definition: animation.cpp:267
Duration duration() const
The duration this animation step represents.
Definition: animation.hpp:28
float ElasticIn(float p)
Definition: animation.cpp:177
float CircularInOut(float p)
Definition: animation.cpp:144
float SineInOut(float p)
Definition: animation.cpp:127
float BounceInOut(float p)
Definition: animation.cpp:244
float CubicIn(float p)
Definition: animation.cpp:51
float CubicInOut(float p)
Definition: animation.cpp:64
float Linear(float p)
Modeled after the line y = x.
Definition: animation.cpp:29
float BounceIn(float p)
Definition: animation.cpp:224
float CircularOut(float p)
Definition: animation.cpp:137
float BackOut(float p)
Definition: animation.cpp:207
float BackInOut(float p)
Definition: animation.cpp:215
float ExponentialInOut(float p)
Definition: animation.cpp:164
float ElasticInOut(float p)
Definition: animation.cpp:191
float QuarticInOut(float p)
Definition: animation.cpp:86
float QuadraticInOut(float p)
Definition: animation.cpp:46
float QuarticOut(float p)
Definition: animation.cpp:78
float SineOut(float p)
Definition: animation.cpp:122
float CircularIn(float p)
Definition: animation.cpp:132
float ExponentialOut(float p)
Definition: animation.cpp:157
float QuadraticOut(float p)
Definition: animation.cpp:39
float QuinticOut(float p)
Definition: animation.cpp:100
float QuadraticIn(float p)
Modeled after the parabola y = x^2.
Definition: animation.cpp:34
float ExponentialIn(float p)
Definition: animation.cpp:152
float QuinticIn(float p)
Definition: animation.cpp:95
float BounceOut(float p)
Definition: animation.cpp:228
float CubicOut(float p)
Definition: animation.cpp:56
float ElasticOut(float p)
Definition: animation.cpp:184
std::function< float(float)> Function
Definition: animation.hpp:35
float BackIn(float p)
Definition: animation.cpp:202
float SineIn(float p)
Definition: animation.cpp:117
float QuarticIn(float p)
Definition: animation.cpp:73
float QuinticInOut(float p)
Definition: animation.cpp:108
std::chrono::duration< float > Duration
Definition: animation.hpp:20